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w = 3 (tp) + is, f81D~%? (aq + %iTlf% (co)] 18) 

We have retained here the notation used in formula (5), we obtain the quantities xi 
and 8i from condition (7) as follows: 

and hence 

--N+Yi 
-ai%i+yi--aj%j+yj, xi=- xi = 

-N+yj 

ai ’ ‘j 
(- 1 <XI is it r&l (Y, -5al)<N=Gmin(yl+crl), 1=1,2,...,L) 

Formula (8) enables us to apply the proposed method to the solution of the class of 
problems described in /4/. 
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2. 

3. 

4. 
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SYSTEM OF 
CRACKS* 

A closed solution of the problem of a periodic system of parallel pairs 
of collinear longitudinal shear cracks is obtained by the method of triple 
integral equations. The case of one crack of finite length in a band of 
periods was examined in /l-5/ for different states of stress, and of two 
semi-infinite cracks in /6,7/. The problem of two collinear cracks in an 
infinite medium was investigated in /8-l&'. 

Let an unlimited elastic plane rOy be weakened by a periodic system of slits @<IsIs 
b, I = f2n + i) d, n - 0, fl, 352 . . -. The relationships /12/ 

should be satisfied outside the slits., where u is the shear modulus, )D is the displacement 
along the 2 axis, and o,, and % are stress tensor components. We assume that the di-splace- 
ment and stress are periodic functions of the y with period 2d. Then the problem reduces 
to constructing the solution of 11) in the strip -d<t,<d that satisfies the boundarycondi- 

*Prikl.Matem,&fekhan,,48,5,877-880,1984 
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We assume that the load T(z) is a symmetric function of the I coordinate. We can then 

limit the consideration to the domain z>,O and represent the solution of (1) in the form 

cyr = P f (9) ch w cos q+ dq 
0 

To determine the function f(g) from the boundary conditions (2) and (3) we obtain the 
triple integral equations 

ss 
f(q)shqdsinqzdq=O, O<+<n, z>b (5) 

0 
cm 

s T(z) 
f(q)chqdcosgzdq=--1 a<z<b 

0 

where the relationship (2) is differentiated with respect to I. We note that the solution of 
analogous dual integral equations is known /13/. 

To construct the solution of (5), we expand the function f(q) in a Kantorovich-Lebedev 
integral /14/ 

f(q) = [ A (8) xippldlL (s)ds (6) 
cl 

Substituting the representation (6) into (5) and using the value of the integral /14/ 
DJ 

s 
li'il(s)cosatdt=~--8cba, (Ima~<+ (7) 

0 

we obtain triple integral equations for the function A(s) 

fA(s)sinspds=O, O<p<ol, p>bl 
0 

(8) 

ca 

s cl<p<bl, 

i 
p=sh-$ .I=sh+, bl=shT nb , F(P) -T(z)) 

(9) 

We seek the function A(s) in the form 

b, 
A(s) = 'j cp (t)sinst dt 

a, 
00) 

Taking account of the orthogonality of the functions sin aa 
formula /15/ 

and sins0 for a#fi and the 

DD 

s 
sinqrdq=+ 

0 

it can be shown that (8) is satisfied identically, while we obtain an equation to determine 
the functions o(t) from (9) 

b, s 
% 

$$dt=-($)1+(p) 

whose solution has the form /16/ 

1 

I/(@ - 01’) (bl’ - 6) 
[g+ i ‘v pF(p)dp] 

where C is a constant whose-value will be determined below while the integral in (11) is 
understood in the principal value sense. 
other methods. 

Equations (8) and (9) were examined in /17-19/ by 
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The stress distribution is expressed directly in terms of the function o (0. Sub- 
stituting relationship (6) into (4) and using (7), we obtain 

It follows from (10) and (12) that 

We obtain a repxesentation for the displacement in an analogous manner 

Substituting the function P(t) from (11) into (13), we obtain the final form of the 
distribution function. 

Expressions for the stress intensity factors K o and Kb at the points .z= a and z= b 
follow from (11) and (13) and the asymptotic expression for the stress on the continuation of 
the crack u~~~K/~~ where A is the distance frca the crack apex. These expressions contain 
the constant C whose value should be determined fran the condition that the displacement vector 
is single-valued during traversal along the crack contour /12/. It can be shown that this 
condition is expressed in terms of the function m(t) as follows 

In the case of a homogeneous load T(X)= Q, we hence obtain 

where E(k) and iI(~,k) ae the complete elliptic integrals of the first and third kinds, 
respectively. In the case of a homogeneous load, we have for the stress intsnsity factors 

The dependences of & (solid lines) and &, (dashes) on the parameter t= l/l@ are shown 
in the figure, where 21=&-u is the length of an 

I.5 individual crack. The values dlI,= bo (two collinear 
cracks), l,Yp and IIs correspond to the curves 1,2,3,4. 
As the crack length increases the stress intensity 
factors increase monotonically. When the collinear 
cracks merge, the factor K, becomes infinite, while Kb 

f remains finite. For small dll, the curves i?,(t) and 
Kb(I) have a shallow section along which the values of 

&l and Kb are practically constant and equal to 
T*KGK, the stress intensity factor for a system of 
parallel semi-infinite cracks. 
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